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INTRODUCTION

Heavy metals are naturally occurring com-
pounds that are part of the Earth’s crust. Their 
broad distribution in the environment as a result 
of their use in human activities (industrial, agri-
cultural, technical applications, etc) has raised the 
concerns about their deleterious impact on eco-
systems (Singh et al., 2011). Whether it was min-
ing or irrigating with sewer wastewater, both con-
tributed to metal poisoning (Stuckey et al., 2021; 
Prudnikova et al. 2020)

Metal toxicity refers to the hazardous effect 
of certain metals in specific forms and amounts 
on living organisms, which is dependent on 
multiple criteria, such as dose, exposure route, 
and chemical form (Tchounwou et al., 2012). 
Heavy metals (Fe, Co, Cu, Mn, Zn, Mo, etc.) 
can act as micronutrients and play a significant 

role in plant development. However, when 
threshold concentrations are exceeded, their ef-
fects are deemed harmful to plant development. 
Metal toxicity in plants, for example, is linked 
to the global increase in soil acidity, which af-
fects 40 percent of the world’s arable land, be-
cause its most poisonous forms are only avail-
able at acidic pH levels (Angulo-Bejarano et al., 
2021). An increase in the Cu levels in soil due 
to human activity might cause phytotoxicity and 
lower plant yield (Trentin et al., 2022).

Cd and Pb, on the other hand, are not re-
quired nutrients for plants and can be phytotoxic 
at low quantities, albeit trace metal bioavailabil-
ity is also influenced by other physicochemi-
cal parameters in the soil, such as pH (Stuckey 
et al., 2021; Kumpiene et al., 2017; Liu et al., 
2009; McBride at al., 1997). Pb, Hg, Co, As, 
Cd, and Cr are only a few examples of heavy 
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metals, which are primarily hazardous and must 
be treated as well as removed from the environ-
ment (Rebello et al., 2021). As a result, one of 
the key challenges for scientists is to rid the en-
vironment of metals in order to lessen their tox-
icity. When utilized sequentially to produce the 
best results, combinatorial approaches employ-
ing physicochemical and biological methodolo-
gies are successful (Khalid et al., 2017). 

One of the most important concerns facing the 
world is water scarcity, and wastewater reuse for 
irrigation purposes could be one of the most ef-
fective solutions (Ungureanu et al., 2020). Waste-
water, on the other hand, may contain organic and 
inorganic pollutants (Chen et al., 2021). One of 
the most common sources of heavy metal con-
tamination is industrial wastewater (Shrestha et 
al., 2021). As a result, extreme caution should be 
exercised when using such water in agriculture.

Several physical, chemical, and biological 
methods are utilized to remove heavy metals 
from contaminated environments. The approach 
for removing heavy metals varies based on the 
processed metal and sample type, whether soil or 
water (Rebello et al., 2021). 

For eliminating heavy metals, a variety of 
processes were tried (ion exchange, membrane 
filtration, adsorption, electrochemical, and 
chemical precipitation), each with its own set 
of advantages as well as issues, obstacles, and 
limitations in application (Rajoria et al., 2022; 
Mishra et al., 2021; Yadav et al., 2021). Because 
of its high effectiveness and low cost, the adsorp-
tion method has advantages in treating wastewa-
ter to remove heavy metals (Singh et al., 2022; 
Cheng et al., 2021).

Pyrolysis was used to create a range of ad-
sorbents, which were subsequently used to clean 
the metal-contaminated environment in a cost-
effective manner (Chen et al., 2022). Due to its 
high porosity and presence of several functional 
groups, biochar has shown tremendous potential 
in the treatment of heavy metal-contaminated 
wastewater (Chai et al., 2021; Ngambia et al., 
2019). In previous investigations, biochar was 
discovered to have a strong affinity for removing 
heavy metals from aquatic environments (Shan 
et al., 2020; Bandara et al., 2020). According to 
Li et al. (2022) and Gupta et al. (2020), the bio-
chars made from organic waste can be utilized 
as green sorbents to remove heavy metals from 
contaminated water.

Plant models have been used to examine met-
al toxicity, according to the literature. The phy-
totoxicity of SPIONs was assessed using Rapha-
nus sativus and Lactuca sativa as model plants 
(Hoffmann et al., 2022). Arabidopsis thaliana is a 
common model plant for studying metal toxicity, 
according to Angulo-Bejarano et al. (2021).

Using Raphanus sp. and Arabidopsis sp. as 
model plants to evaluate its phytotoxicity, this 
study aimed to show that using date seed biochar 
as a remediation agent can reduce the metal stress 
of contaminated irrigation water on seed germi-
nation and seedling growth, paving the way for 
further research and development.

MATERIAL AND METHODS

Plant materials, bacteria, 
biochar, and heavy metals 

Radish (Raphanus sp.) and Cress (Arabidop-
sis sp.) seeds were purchased at the local market. 
The date seeds (DS) biochar was made in our 
lab at 550°C, as previously stated (Al-Tarawneh, 
2022). The metal solutions of Cu, Zn, Cd, Pb, 
and metals combination (Cu + Zn + Cd + Pb) 
were prepared in deionized water from their 
salts of nitrate with concentrations of 0, 20, 50, 
100, 200, 400, 600, 800, and 1000 ppm for the 
seed germination and seedling growth experi-
ments. The 0 concentration was just deionized 
water and was used as a control. All metal solu-
tions were set to a pH of 7.

Effects of metal toxicity on seed 
germination and seedling growth

Both plants (Raphanus sp. and Arabidopsis 
sp.) with and without biochar application were 
tested in triplicate for each metal concentration. 
To achieve this goal, 50 seeds were embedded on 
a double layer of filter papers in a 9 cm Petri dish 
with 10 mL of each metal concentration but no 
DS biochar. The experiment was repeated with 
the addition of 0.5 g of DS biochar with a grain 
size of < 250 µm between the filter papers. All 
Petri dishes were cultured at 25°C in an incubator 
with white light for 8 days and were examined 
daily. Seed germination, seedling growth, as well 
as shoot and root length were all measured at the 
end of the incubation period.
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Seeds were classified as germinated when the 
seed coat was broken and visible, and as inhibited 
if the seed coat was not broken throughout the 
8-day incubation period. When the seed coat was 
broken and the embryo grew, the seedling was re-
garded grown; however, when the seed coat was 
broken but the embryo did not grow, it was re-
corded as inhibited (Li et al., 2005).

The lethal concentration 50 (LC50) of the in-
vestigated metals on the seed germination and 
seedling growth of Raphanus sp. and Arabidop-
sis sp. were revealed from the results, where 50% 
killing or inhibition occurred.

According to (El Rasafi et al., 2016), the 
relative germination rate (RGR), germination 
percentage (GP), tolerance index (TI), and phy-
totoxicity percentage (PT) were calculated in 
equations 1, 2, 3, and 4.

RGR =
Germination percentage of metal treatment

Germination percentage of control
 

 

GP =
Germinated seeds

Total seeds
 × 100 

 

TI =
Mean of root length in metal treatment

Mean of root length in control
 × 100 

 

PT =

Root length in control −
− Root length in metal treatment

Root length in control
 × 100 

(1)

RGR =
Germination percentage of metal treatment

Germination percentage of control
 

 

GP =
Germinated seeds

Total seeds
 × 100 

 

TI =
Mean of root length in metal treatment

Mean of root length in control
 × 100 

 

PT =

Root length in control −
− Root length in metal treatment

Root length in control
 × 100 

(2)

RGR =
Germination percentage of metal treatment

Germination percentage of control
 

 

GP =
Germinated seeds

Total seeds
 × 100 

 

TI =
Mean of root length in metal treatment

Mean of root length in control
 × 100 

 

PT =

Root length in control −
− Root length in metal treatment

Root length in control
 × 100 

(3)

RGR =
Germination percentage of metal treatment

Germination percentage of control
 

 

GP =
Germinated seeds

Total seeds
 × 100 

 

TI =
Mean of root length in metal treatment

Mean of root length in control
 × 100 

 

PT =

Root length in control −
− Root length in metal treatment

Root length in control
 × 100 (4)

Data analysis

The student’s t-test was used to statistically 
assess all of the results, which were expressed as 
mean ± SD. Using the SPSS computer software, 
basic linear regression was applied to examine 
the correlation between the data. The lowest limit 
of significance was defined as a P value < 0.05.

RESULTS 

As previously indicated, the DS biochar used 
in this study was produced in our laboratory at 
550°C with 69% porosity, 7.8 pH, and 833 mg/kg 
of Cd absorption capacity (Al-Tarawneh, 2022). 
By embedding the seeds of Arabidopsis sp. and 
Raphanus sp. in artificially polluted water spiked 

Table 1. Effect of DS biochar application on LC50 of Cu, Zn, Cd, Pb, and metal combination on seed germination 
and seedling growth of Raphanus sp. and Arabidopsis sp., the results were expressed by mean ± SD, were n = 3

Metal Parameter DS Biochar 
application

Raphanus sp. Arabidopsis sp.

LC50 (ppm) Fold increment LC50 (ppm) Fold increment

Cu

Seed 
germination

- * 50 ± 5
10.4

10 ± 2
5.0

+ ** 520 ± 48 50 ± 8

Seedling growth
- 35 ± 4

9.6
10 ± 1.5

7.0
+ 335 ± 37 70 ± 15

Zn

Seed 
germination

- 220 ± 31
2.3

35 ± 4
3.4

+ 510 ± 55 120 ± 11

Seedling growth
- 50 ± 4

9.2
20 ± 3

3.0
+ 460 ± 41 60 ± 5

Cd

Seed 
germination

- 100 ± 9
5.0

10 ± 2
6.0

+ 495 ± 51 60 ± 5

Seedling growth
- 25 ± 3

13.8
35 ± 3

2.3
+ 345 ± 25 80 ± 6

Pb

Seed 
germination

- 250 ± 28
1.8

10 ± 2
5.5

+ 450 ± 48 55 ± 4

Seedling growth
- 33 ± 4

12.1
35 ± 3

2.9
+ 400 ± 39 100 ± 8

Metal 
combination

Seed 
germination

- 38 ± 4
3.0

12 ± 1
2.5

+ 113 ± 8 30 ± 3

Seedling growth
- 28 ± 3

1.6
10 ± 2

2.7
+ 44 ± 3 27 ± 2.5

Note: * – without biochar application; ** – with biochar application.
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with various metals concentrations, the ability 
of DS biochar to minimize metal stress on seed 
germination and seedling growth by treating con-
taminated water was tested in the current study.

Seed germination and seedling growth

The results showed that DS biochar raised 
the LC50 of all investigated metal solutions on 
seed germination in Raphanus sp. by 10.4, 2.3, 5, 
1.8, and 3 folds, respectively, for Cu, Zn, Cd, Pb, 
and metals combination, as well as by 5, 3.4, 6, 
5.5, and 2.5 fold in Arabidopsis sp. For seedling 
growth, the DS biochar application increased the 
LC50 of the same metals in Raphanus sp. by 9.6, 
9.2, 13.8, 12.1, and 1.6 folds, and in Arabidopsis 
sp. by 7, 3, 2.3, 2.9, and 2.7 folds, respectively 
(Table 1, Figures 1–5).

When compared to non-biochar application, 
all of the LC50 values improved significantly 
(P<0.05), independent of the metal tested, with 
improvements ranging from 1.8 to 10.4 times for 
seed germination and from 1.6 to 13.8 time for 
seedling growth in Raphanus sp. The same pat-
tern of results was obtained in Arabidopsis sp., 
where the DS biochar application increased the 
LC50 by 2.3–5 times for seed germination and 
2.5–7 times for seedling growth. It was noticed 
that both the Arabidopsis sp. seed germination 
and seedling growth were more susceptible to 
metals than Raphanus sp. In terms of lethal con-
centration (LC), the LC of all metals increased 
with 1.5 to 8 times on Raphanus sp. (seed germi-
nation and seedling growth) and 1.5 to 12 times 
on Arabidopsis sp. after the DS biochar applica-
tion (Figures 1–5). 

Figure 1. Effects of different Cu concentrations on seed germination and seedling growth of 
(A) Raphanus sp. and (B) Arabidopsis sp. with and without DS biochar application
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Shoots production and length

When compared to the metals without the DS 
biochar application, the findings of shoot produc-
tion demonstrated that the DS biochar application 
reduced the toxicity of all metals significantly (P < 
0.05) by allowing both plants to develop shoots at 
higher metal concentrations. When the DS biochar 
was used, Raphanus sp. was able to produce shoots 
with 600 ppm Cu, compared to 50 ppm without the 
DS biochar. The results for the other metals fol-
lowed a similar trend, with variations in survival 
concentrations for the development of shoots. The 
same pattern was also seen in Arabidopsis sp. 
(Figure 6). Similar findings were obtained in terms 
of shoot length, with DS biochar significantly in-
creasing shoot length (P<0.05) when compared to 
non-biochar application (Table 2 and Figure 6).

Relative germination rate

According to the data of RGR (relative germi-
nation rate), the beginning concentration of inhibi-
tory impact of all metals on Raphanus sp. was con-
siderably improved from 20 ppm without DS bio-
char to 100 ppm with DS biochar application. With 
the exception of Cu and Zn at 20 ppm, the stress 
generated by all metals on this plant was greatly 
decreased by raising the RGR with DS biochar ap-
plication, regardless of the metal concentration. 
Despite the fact that Arabidopsis sp. was more 
sensitive to metals than Raphanus sp., Arabidop-
sis sp. enhanced its RGR values with DS biochar 
application in all metal concentrations except Pb 
at 20 ppm. Furthermore, after DS biochar applica-
tion, both plants were able to sprout at higher metal 
concentrations than without it (Figure 7).

Figure 2. Effects of different Zn concentrations on seed germination and seedling growth of 
(A) Raphanus sp. and (B) Arabidopsis sp. with and without DS biochar application
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Tolerance Index

When compared to non-biochar treatment, 
the results showed that DS biochar application 
to all metals had a significant (P<0.05) effect 
on the TI (Tolerance Index) of both plants. The 
significance of DS biochar application on Cu, 
Zn, Cd, Pb, and metals combination for Rapha-
nus sp. was obvious at concentrations of 20–
400, 200–600, 50–600, 50–600, and 20–200 
ppm, respectively. In turn for Arabidopsis sp., 
20–200, 50–200, 20–400, 20–200, and 50–100 
ppm were obtained, indicating that Raphanus 
sp. was more tolerant of metal toxicity than 
Arabidopsis sp. There was no substantial in-
fluence on Tolerance Index outside of these 
concentration ranges (Figure 8).

Phytotoxicity

The root length was utilized to assess and 
evaluate the PT (phytotoxicity) of all metals 
on Raphanus sp. and Arabidopsis sp. The PT 
of metals on Raphanus sp. increased along 
with metal concentrations; however this tox-
icity was mitigated by using the DS biochar. 
By using the DS biochar, the metal concen-
trations that induce 100% toxicity were raised 
from 100 to 800 ppm for Cu and Cd, from 200 
to 1000 ppm for Zn and Pb, and from 100 to 
400 ppm for the metals combination. The met-
als concentrations that elicit 100% toxicity 
in Arabidopsis sp. were enhanced from 50 to 
400 ppm for Cu and Pb, from 100 to 600 ppm 
for Zn and Cd, and from 100 to 200 ppm for 
the metals combination by employing the DS 

Figure 3. Effects of different Cd concentrations on seed germination and seedling growth of 
(A) Raphanus sp. and (B) Arabidopsis sp. with and without DS biochar application
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biochar. However, in Raphanus sp., the sig-
nificance of enhancement (P<0.05) by reduc-
ing metal toxicity caused by the DS biochar 
was between 20 and 200 ppm Cu and metals 
combination, 100 to 400 ppm Zn, and 20 to 
600 ppm Cd and Pb, and in Arabidopsis sp., it 
was between 20 and 200 ppm Cu and Pb, 50 to 
200 ppm Zn, 20 to 400 ppm Pb, and 50 to 100 
ppm metals combination. Thus, independent 
of the plant type or metal applied, the highest 
reduction in PT% as a result of the DS biochar 
application was obtained between 50 and 100 
ppm metals concentration (Figure 9). These 
findings support the earlier observations that 
Arabidopsis sp. is more metal-sensitive than 
Raphanus sp.

DISCUSSION

In the current study, the influence of metal 
stress on two plants (Raphanus sp. and Arabidop-
sis sp.) growth indices was investigated with and 
without the use of DS biochar. 

According to the findings of current study; 
Cu, Zn, Cd, Pb, and combination of metals had 
varied effects on seed germination and early 
seedling growth in Raphanus sp. and Arabidop-
sis sp. These findings aligned with those of El 
Rasafi et al., (2016), who discovered that metal 
toxicity on seed germination, root and shoot 
elongation differed depending on metal type 
and plant species. Many authors have described 
the influence of metals on seed germination as a 

Figure 4. Effects of different Pb concentrations on seed germination and seedling growth of 
(A) Raphanus sp. and (B) Arabidopsis sp. with and without DS biochar application
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reduction in water intake and transport, as well 
as death or embryonic harm (El Rasafi et al., 
2016; Wierzbicka and Obidzinska, 1998; Becer-
ril et al., 1989). The degree of metal poisoning 
that affects germination varies by plant species 
and metal kind. In the presence of increased 
metal concentrations, some plants can sprout, 
but this is extremely detrimental to other species 
(Kranner and Colville, 2011).

The results also demonstrated that utilizing 
the DS biochar reduced metal stress by increas-
ing the LC50 and LC values, which promoted 
seed germination and seedling growth. These 
findings could be construed as evidence that 
toxicity is related to the accessible percentage of 
metals due to increased water solubility of con-
taminants (Ahmad et al., 2012). According to the 
same author, biochar reduces the bioavailability 

and bio accessibility of Pb in polluted soil by 
75.8% and 12.5%, resulting in significant in-
creases in Lactuca sativa seed germination and 
root length when compared to unamended soil 
by 360 and 189%, respectively.

The addition of woody biochar reduced the 
Ag toxicity on Hordeum vulgare by increasing 
the LC50 and LC, indicating a strong potential for 
soil remediation, as the Ag toxicity was reduced 
in most endpoints studied in barley (Mocova et 
al., 2022). According to Soudek et al., (2017), 
different biochars exhibit adsorption capacities 
of 11.63–20.16, 7.83–20.08, and 70.92–200 mg/g 
for Cd, Cu, and Pb, respectively, thus, applica-
tion of biochar reduce their toxicity on Sorghum 
seed germination. Increased pyrolysis tempera-
ture for biochar synthesis increases surface area 
and porosity, and consequently metal adsorption 

Figure 5. Effects of different concetrations of metals combination on seed germination and seedling 
growth of (A) Raphanus sp. and (B) Arabidopis sp. with and without DS biochar application
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the concentrations of Cd, Zn, and Pb that induced 
100% inhibition of rapeseed shoot growth were 92, 
10916, and 328 mg/kg, respectively.

According to this study, as the Cu, Zn, Cd, 
and Pb concentrations increased; the tolerance 
index of all seedlings decreased considerably, 
with some differences across metals within and 
between plant species. In terms of metal concen-
trations and metal type, TI improved significantly 
(P<0.05) in both plants after the application of DS 
biochar. The metal effect, according to Mahmood 
et al., (2007), may be linked to the regulation of 
metal absorption induced by the changes in seed 
coat structure between species, resulting in dif-
ferences in metal permeability. In general, the 
presence of DS biochar may reduce the impact of 
these metals on seeds due to its strong propensity 
to adsorb metals, lowering their accessible con-
centration in water for plants.

Phytotoxicity assays revealed that, depending 
on the metal type and plant species, PT increased 
along with metal concentrations until it reached 
100% at a particular concentration, matching the 
findings of many prior investigations. Metal PT 
on plants increased proportionally with metal 
concentrations, according to numerous authors 

capacity (Al-Tarawneh, 2022; Chatterjee et al., 
2020; Guittonneau et al., 2010). The date seed 
biochars with the best Pb removal effectiveness 
were those with the highest pyrolysis temperature 
(Al-Tarawneh, 2022; Mahdi et al., 2018). Accord-
ing to Ahmad et al. (2012), date seeds biochars 
have a high affinity for binding heavy metals, 
making them capable of removing heavy metals 
from water. Usman et al. (2016) discovered that 
the date palm biochar produced at 700°C was 
successful in removing metals from aqueous so-
lution with an adsorption capacity of 43.58 mg/g. 
Increased soil pH resulted in decreased metal bio-
availability in the soil (Rehman et al., 2016).

Many authors concurred with these conclusions. 
It was discovered that using 1% biochar made from 
chicken manure boosted the biomass of Brassica 
juncea shoots by 353% (Park et al., 2011). By im-
proving plant height, root length, shoot and root dry 
weight, the biochar generated from various sources 
was discovered to reduce Ni bioavailability and tox-
icicty on Zea mays L. growth (Rehman et al., 2016). 
Biochar addition reduced the bioavailable metal 
concentrations. The reductions in Cd, Zn, and Pb 
were 71, 87, and 92 %, respectively (Houben et al., 
2013). According to Hernandez-Allica et al., (2008), 

Table 2. Shoot lengths (cm) of Raphanus sp. and Arabidopsis sp. after treatment with different metal concentrations 
and with and without DS biochar application, the results were expressed by mean ± SD, were n = 3

Metal 
concentration

Cu Zn Cd Pb Metal combination

-a +b - + - + - + - +

Raphanus sp.

0 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.5 1.7 ± 0.5 1.6 ± 0.5 1.5 ± 0.3 1.6 ± 0.4 1.7 ± 0.5 1.6 ± 0.4 1.6 ± 0.5

20 0.9 ± 0.2 1.6 ± 0.4 1.4 ± 0.3 1.6 ± 0.5 0.9 ± 0.2 1.4 ± 0.3 1.2 ± 0.2 1.5 ± 0.3 0.9 ± 0.3 1.2 ± 0.4

50 0.4 ± 0.06 1.5 ± 0.3 0.8 ± 0.04 1.2 ± 0.2 0.3 ± 0.03 1.3 ± 0.2 0.6 ± 0.02 1.1 ± 0.2 0.2 ± 0.01 1.0 ± 0.1

100 0.0c 1.3 ± 0.1 0.5 ± 0.03 1.1 ± 0.2 0.0 1.3 ± 0.2 0.3 ± 0.03 1.0 ± 0.2 0.0 0.7 ± 0.1

200 0.0 0.8 ± 0.2 0.0 0.9 ± 0.1 0.0 0.8 ± 0.2 0.0 0.8 ± 0.2 0.0 0.4 ± 0.1

400 0.0 0.5 ± 0.02 0.0 0.5 ± 0.03 0.0 0.4 ± 0.02 0.0 0.4 ± 0.02 0.0 0.0

600 0.0 0.2 ± 0.02 0.0 0.3 ± 0.02 0.0 0.1 ± 0.01 0.0 0.3 ± 0. 0.0 0.0

800 0.0 0.0 0.0 0.1 ± 0.01 0.0 0.0 0.0 0.1 0.0 0.0

1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Arabidopsis sp.

0 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3

20 0.4 ± 0.1 0.9 ± 0.2 0.6 ± 0.2 1.1 ± 0.2 0.5 ± 0.2 1.0 ± 0.3 0.7 ± 0.2 1.1 ± 0.4 0.4 ± 0.1 0.9 ± 0.2

50 0.0 0.6 ± 0.2 0.2 ± 0.03 0.8 ± 0.1 0.0 0.7 ± 0.2 0.0 0.7 ± 0.3 0.0 0.4 ± 0.05

100 0.0 0.2 ± 0.05 0.0 0.7 ± 0.1 0.0 0.5 ± 0.1 0.0 0.6 ± 0.2 0.0 0.2 ± 0.03

200 0.0 0.1 ± 0.05 0.0 0.4 ± 0.04 0.0 0.3 ± 0.05 0.0 0.2 ± 0.03 0.0 0

400 0.0 0.0 0.0 0.1 ± 0.03 0.0 0.1 ± 0.04 0.0 0.0 0.0 0

600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

800 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Note: a – without DS biochar application; b – with DS biochar application; c – no growth.



76

Journal of Ecological Engineering 2022, 23(7), 67–82

Figure 6. Shoots production and length of Raphanus sp. (A-E) and Arabidopsis sp. (F-J) when 
treated with different concentration of different meteal, with and without DS biochar application

(Ashagre et al., 2013; and Shaikh et al., 2013). 
The PT of both plants improved significantly 
(P<0.05) after the application of DS biochar, both 
in terms of metal concentrations and metal type. 

Because of its significant proclivity to absorb 
metals, DS biochar may lessen their influence on 
seeds by lowering their accessible concentration 
in water for plants.
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Figure 7. Relative germination rate of Raphanus sp. (A-E) and Arabidopsis sp. (F-J)  
when treated with different metals, with and without DS biochar application
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Figure 8. Effect of different metals concentrations on the Tolerance Index (TI) of Raphanus 
sp. (A-E) and Arabidopsis sp. (F-J), with and without DS biochar application
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Figure 9. Effect of different metals concentrations on the phytotoxicity (PT) or Raphanus 
sp. (A-E) and Arabidopsis sp. (F-J), with and without DS biochar appliacation
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CONCLUSIONS

On the basis of on the findings of the cur-
rent study, DS biochar was shown to be a good 
provided raw material for remediation of metal 
contaminated water, hence lowering metal stress 
and toxicity on plants and seeds. This could be 
owing to the fact that metal toxicity is decreased. 
Evidence showed the biochar made from date 
seeds at 550°C changed the partitioning of Cu, 
Zn, Cd, and Pb from the easily exchangeable 
phase to the less accessible organic bound por-
tion. In conclusion, independent of the metal 
employed or its concentration, biochar proved 
successful in immobilizing metals, reducing 
heavy metal bioavailability and phytotoxicity, as 
well as increasing the tolerance index of Rapha-
nus sp. and Arabidopsis sp. More research into 
biochar production and optimization is therefore 
needed in order to improve its sorption capabil-
ity for metals cleanup in aquatic environments.
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